
Evolving Neural Networks with NEAT to Control
an X-Drive Robot

Brandan Roachell
Dept. of Electrical Engineering and Computer Science

University of Tennessee, Knoxville
Knoxville, TN, USA
broachel@vols.utk.edu

Drew Friend
Dept. of Electrical Engineering and Computer Science

University of Tennessee, Knoxville
Knoxville, TN, USA
afriend3@vols.utk.edu

Abstract—With the rise of self-driving technology and other
artificially intelligent systems, full autonomy has become an
increasingly more desirable yet achievable goal. We explored an
application of genetically evolved neural networks to an X-drive
robot. Directly controlling the velocities of the four motors with
the available information to drive to a target position proved to
be a relatively simple problem for the trained model to solve
and was feasible in simulation. However, the implementation on
a physical robot was far more challenging for various possible
reasons.

I. INTRODUCTION AND MOTIVATION

Since we both have a strong background in robotics, we
thought it would be interesting to apply biologically-inspired
algorithms to this field. We decided we would explore how a
trained model might behave when presented with a driving
task. X-drive has a more interesting control scheme with
complicated equations involved, as seen later. Self-driving
technology is on the rise, and exploring different avenues
of mobility could lead to more interesting, exciting, and
optimized applications of this than the traditional approach of
“a modern car capable of driving itself.” We sought to answer
the following question: how feasible is it to evolve a neural
network to control an X-drive robot entirely on its own?

X-drive, a subset of holonomic driving mechanisms com-
monly used in the VEX robotics competition, is a robot control
scheme consisting of 4 motor groups each controlling an omni-
directional wheel angled at 45◦ from the X and Y axes of the
robot. Being holonomic, this layout allows the robot to rotate
independent of its translational movement. It also gives the
robot the ability of planar driving, where movement in any
direction is possible without needing to change the heading
of the robot. These are the equations that allow a human
driver or hard-coded approach to drive directly to any point
either while turning or facing the same direction. Given the
multiple layers of trigonometry and simple math, we expected
the model to create something similar, using a multi-layer
network to emulate these equations. Given the (x, y) position
of a joystick with values between −100 and 100, and a, some
scaled turning power from another joystick, the X-drive control

Fig. 1. Our physical X-drive robot.

scheme is as follows:

xadj = −y cos θ − x sin θ

yadj = −y sin θ + x cos θ

m1 = a+ yadj + xadj

m2 = a− yadj + xadj

m3 = a− yadj − xadj

m4 = a+ yadj − xadj

where “adj” stands for “adjusted,” θ is the heading (angle of
the “front”) of the of the robot, and mi is the desired power
of motor i.

II. RELATED WORK

In addition to driving simpler robot drivetrains with fewer
wheels and more simplified controls, many of the related
approaches were focused on other applications of a neural
network like computer vision and path optimization. There is
little to no existing work that we found regarding controlling
any form of holonomic drivetrain. We also did not find
anything about training robot movement entirely from a model
without predefined drive code. To elaborate, our model is only
able to control motor powers—it does not have access to the
concepts of “turn” or “drive forward.”

Further reading can be found in references [1] [7] [12]
[3] [10] [6] [9] [2] [4] [8].



III. METHODOLOGY

Due to the nature of both our problem and genetic al-
gorithms, training this model on a physical robot was not
feasible within the scope of this project. We instead developed
a robot simulator in Python to be used as the problem space
for training. This allowed training to happen much quicker
than it would have in real time, and Python’s package options
made it easier to implement code for our purposes. We used
NEAT [5] to evolve populations of robots to reach a goal
position and angle in our simulation using custom odometry
and fitness code. The best network at the end of this process
was saved and copied into C++, where we then fit it into the
existing drive code for the robot. This workflow is visualized
at a high level in Figure 2, and our implementation details can
be found in our repository [11].

A single generation of training consisted of the population
being initiated—either randomly for generation 1 or based on
previous evaluations for all other generations. This population
was then subjected to five trials, and the fitnesses found across
these trials were averaged for each individual in order to create
wider variance in the evaluated fitness scores and differentiate
the good generalists from the models that got lucky with goal
placement. A trial consists of the individual being placed at the
origin with a heading of 0◦ and being given a goal somewhere
within a distance of 10 arbitrary units (but 100 units when
generating the plots in Figures 9–11) and a goal angle. The
robot is then able to “drive” for 100 iterations, with each
previous iteration impacting both the robot’s momentum and
current position, which are inputs of the network. The fitness
was measured with the function below:

F (S) =

{
1.5 if d+ ∆θ

4π < 0.05,

1− (d+ ∆θ
4π ) otherwise,

where S is the genome, d is the distance from the goal, and
∆θ is the absolute difference between the robot and goal angle
in radians, measured along the shortest arc.

This function gave the model a bonus above the theoretically
perfect score of 1 for getting within a small range of the goal
and/or reaching the target angle. This allowed models that
routinely do well to average notably higher than the models
that fall short. It also prioritized the position over the angle.
Because the maximum arc from the current angle was π,
dividing by 4π reduces the range of possible angles to [0, 0.25],
whereas the distance was unbounded in the negative direction
and bounded by 1 in the positive.

The hyperparameters of the genetic algorithm that we
landed on were a population size of 500, running for 100
generations, and extremely volatile connections compared to
NEAT examples. All activation functions were considered, and
the probabilities for adding, deleting, or modifying the nodes
and connections were relatively high, as documented in our
code. These factors combined to allow our models to find
the solutions early and often and spend more time in later
generations increasing efficiency.

The five best models from preselected generations were
saved and tested in nine driving tasks with different target

positions outside of the range of distances initially trained
on and a target angle of π radians with 500 iterations to
drive. This allowed us to demonstrate the ability of the robot
to somewhat generalize driving in any direction, as well as
showcase intra-generational variance and model the robot’s
end behavior when given more timesteps than needed—one
of the largest improvements through generations.

Fig. 2. A diagram of our workflow.

IV. RESULTS

A. Model Results

We were shocked at how quickly the modeled robots were
able to find the goal and remain in its vicinity. Our expectation
for many of the early generations was to see robots spinning
or moving in unpredictable directions given that none of the
motors are directly linked to a single coordinate, and they also
run against each other. However, as seen in Figure 3, a rough
solution was discovered very early.

There is room for improvement in this model. It does not
take the most efficient path to a point, instead traveling along
a 45◦ transversal until it shares an x or y coordinate with
the goal before following a straight line along the other axis
from there. There are also certain directions that the model
takes longer to move in than others, as well as directions it
cannot travel in directly. Rather, it moves in a zig-zag pattern
in adjacent directions, leading to an erratic movement overall
(Fig. 4c).

B. Simulation Results

The simulation was completely novel software and a large
hurdle to get past in training the AI. It involved translating the
necessary robot code from C++ to Python, as well as creating



a fitness function, tracking the position in artificial space, and
simulating basic physics concepts like inertia and friction.
Overall, the results of this section are mixed. The simulation
worked very well insofar as creating a reliable problem space
for training purposes. The best fitness was able to increase
over time (Fig. 6), and when applied to the visualization
software, the models moved approximately as expected and
were adaptable to moving targets as well. However, as the
following section will cover, the simulation was not as true-
to-life as we anticipated.

C. Translation to Physical Robot

The translation to the physical robot base did not go as
cleanly as we had hoped. A small initial issue was scaling.
The arbitrary units used in the simulation were on the order
of magnitude of inches, whereas the encoder counts were
small fractions of that. This was easily remedied with some
conversions, though it complicated the translation process.

The first systemic issue we found is that the robot frame
has warped in the last few months of disuse, causing issues
where not all wheels would have equal pressure on the ground.
This resulted in spinning out or not moving when it should
be. The friction and inertia numbers were also inaccurate,
resulting in skewed physics that did not work well on the
robot. Additionally, the process of transferring models from
the NEAT format to our C++ implementation was not easy,
resulting in fewer networks tested physically and the physical
testing space was being used by other members of our robotics
team during the times that we were testing, decreasing the
number of tests that could be run.

V. DISCUSSION

Our work, if not completely successful in the original goal
of teaching an AI to drive itself via an evolved neural network,
did show great promise and proof of concept. The question of
whether or not a robot could be trained to drive a holonomic
drive base when given direct control of the motor powers
appears to be a resounding yes, and given more time to tune
the simulator and a more reliable hardware setup, these results
seem very capable of making the transition to the real world.

VI. CONCLUSION AND FUTURE WORK

The final goal of the experiment was not realized—due
primarily to the scope of the project both in time and re-
sources. However, the biologically-inspired section seems to
have worked quite well. One issue that we discovered late in
the process is that the bonus may be hampering the ability of
the fitness scores to accurately describe performance. Because
it is so high, a network that got lucky once or twice would
be able to have an average fitness near what the best general-
purpose networks could accomplish. The other issue with the
fitness function is that it has a small range of “good” values
and does not emphasize efficiency as much as we would like.
Fitness values in (0, 1.5] mean the network moved in the
correct direction, but this is a limited range. This creates a
small problem space of models that are working as intended

and stops the best-performing models from rising notably past
the others.

In the future, we would like to expand upon this project
by continuing with our goal of implementing it on a physical
robot. The steps to do this include writing a more realistic
fitness function and adding more accurate physics to the
simulation, such as a deadband of small values that cannot
turn the wheel on the physical robot. Additionally, we would
need to fix a few small issues on the robot itself to eliminate
errors originating from its usual wear and tear. Although an
impressive showing of ingenuity to travel in a new direction,
we hope to see the robot develop methods more efficient than
the erratic zig-zag motions and either straight or 45◦ angles it
uses currently.

REFERENCES

[1] R. Fierro and F.L. Lewis. Control of a nonholonomic mobile robot using
neural networks. IEEE Transactions on Neural Networks, 9(4):589–600,
1998. doi:10.1109/72.701173.

[2] Michele Folgheraiter, Giuseppina Gini, Alessandro Nava, and Nicola
Mottola. A bioinspired neural controller for a mobile robot. In 2006
IEEE International Conference on Robotics and Biomimetics, pages
1646–1651. IEEE, 2006.

[3] Tiffany Hwu, Jacob Isbell, Nicolas Oros, and Jeffrey Krichmar. A
self-driving robot using deep convolutional neural networks on neuro-
morphic hardware. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 635–641, 2017. doi:10.1109/IJCNN.
2017.7965912.

[4] Namratha Karkera, Mansi Pednekar, Soumya Mokashi, Sushma Kore,
and Prajakta Kakade. Autonomous vehicle using artificial neural net-
work. In Proceedings of the 4th International Conference on Advances
in Science & Technology (ICAST2021), 2021.

[5] Alan McIntyre, Matt Kallada, Cesar G. Miguel, Carolina Feher de
Silva, and Marcio Lobo Netto. neat-python. URL: https://github.com/
CodeReclaimers/neat-python.

[6] Akshay Mogaveera, Ritwik Giri, Mihir Mahadik, and Anup Patil. Self
driving robot using neural network. In 2018 International Conference on
Information , Communication, Engineering and Technology (ICICET),
pages 1–6, 2018. doi:10.1109/ICICET.2018.8533870.

[7] Omid Mohareri, Rached Dhaouadi, and Ahmad B. Rad. Indirect
adaptive tracking control of a nonholonomic mobile robot via neural
networks. Neurocomputing, 88:54–66, 2012. Intelligent and Au-
tonomous Systems. URL: https://www.sciencedirect.com/science/article/
pii/S092523121200015X, doi:https://doi.org/10.1016/j.
neucom.2011.06.035.

[8] Pascal Morin and Claude Samson. Control of nonholonomic mobile
robots based on the transverse function approach. IEEE Transactions
on robotics, 25(5):1058–1073, 2009.

[9] D R Parhi and M K Singh. Real-time navigational control of mo-
bile robots using an artificial neural network. Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechani-
cal Engineering Science, 223(7):1713–1725, 2009. doi:10.1243/
09544062JMES1410.

[10] D.A. Pomerleau. Progress in neural network-based vision for au-
tonomous robot driving. In Proceedings of the Intelligent Vehicles
‘92 Symposium, pages 391–396, 1992. doi:10.1109/IVS.1992.
252290.

[11] Brandan Roachell and Drew Friend. URL: https://github.com/s4mpl/
Bio-Inspired Final Project.

[12] M.K. Singh and D.R. Parhi. Path optimisation of a mobile robot using an
artificial neural network controller. International Journal of Systems Sci-
ence, 42(1):107–120, 2011. doi:10.1080/00207720903470155.

https://doi.org/10.1109/72.701173
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1109/IJCNN.2017.7965912
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python
https://doi.org/10.1109/ICICET.2018.8533870
https://www.sciencedirect.com/science/article/pii/S092523121200015X
https://www.sciencedirect.com/science/article/pii/S092523121200015X
https://doi.org/https://doi.org/10.1016/j.neucom.2011.06.035
https://doi.org/https://doi.org/10.1016/j.neucom.2011.06.035
https://doi.org/10.1243/09544062JMES1410
https://doi.org/10.1243/09544062JMES1410
https://doi.org/10.1109/IVS.1992.252290
https://doi.org/10.1109/IVS.1992.252290
https://github.com/s4mpl/Bio-Inspired_Final_Project
https://github.com/s4mpl/Bio-Inspired_Final_Project
https://doi.org/10.1080/00207720903470155


(a) (0, 0) (b) (0, 24)

(c) (24, 24) (d) (24, 0)

(e) (24,−24) (f) (0,−24)

(g) (−24,−24) (h) (−24, 0)

(i) (−24, 24)

Fig. 3. Performance of the top 5 models after 10 generations for various
target positions and a target angle of π radians given 500 iterations. The
models were trained on random directions within only 10 units and given 100
iterations. Line segment color represents the current angle between [−π, π],
but the colorbar is unavailable—note that the target angle color is red.

(a) (0, 0) (b) (0, 24)

(c) (24, 24) (d) (24, 0)

(e) (24,−24) (f) (0,−24)

(g) (−24,−24) (h) (−24, 0)

(i) (−24, 24)

Fig. 4. Performance of the top 5 models after 50 generations for various
target positions and a target angle of π radians given 500 iterations. The
models were trained on random directions within only 10 units and given 100
iterations. Significant improvements in terms of efficiency and stability of end
behavior.



(a) (0, 0) (b) (0, 24)

(c) (24, 24) (d) (24, 0)

(e) (24,−24) (f) (0,−24)

(g) (−24,−24) (h) (−24, 0)

(i) (−24, 24)

Fig. 5. Performance of the top 5 models after 100 generations for various
target positions and a target angle of π radians given 500 iterations. The
models were trained on random directions within only 10 units and given 100
iterations. Little improvement from generation 50 in terms of efficiency and
stability of end behavior, but some models began to use the extra iterations
to achieve the goal angle (in red).

Fig. 6. The best fitnesses from each generation of the original training results
(Fig. 3–8).

Fig. 7. The speciation of each generation in the original training results (Fig.
3–8).

Fig. 8. The best model from the final generation of the original training
results (Fig. 3–8).



Fig. 9. The best fitnesses from each generation of the results after tweaking
the simulation to our live demo environment and retraining (Fig. 9–11). An
increase in robot radius and total distance it was trained over (up to 100
units) were found to give better behavior in our demo environment, which
slightly differed from the simulation environment in how a robot’s position
was updated—using real time as a scaling factor for distance traveled in a
given timestep—and was our first time fully visualizing the behavior in real
time. The increased radius of the robot helped to quell the uncontrollable
spinning observed in the original model.

Fig. 10. The speciation of each generation in the results after tweaking the
simulation to our live demo environment and retraining (Fig. 9–11).

Fig. 11. The best model from the final generation of the results after tweaking
the simulation to our live demo environment and retraining (Fig. 9–11).


	Introduction and Motivation
	Related Work
	Methodology
	Results
	Model Results
	Simulation Results
	Translation to Physical Robot

	Discussion
	Conclusion and Future Work
	References

