Evolving Neural Networks with NEAT

to Control an X-Drive Robot

Brandan Roachell and Drew Friend

Introduction & Motivation Results (cont.)

e Both have a strong background in robotics » : :
e Wanted to explore how a trained model might behave when : :) %
presented with a driving task using direct motor inputs . Y . .
e X-drive has a more interesting control scheme with Paths and anglesof - L L.
complicated equations involved the top 5 performers
e Self-driving technology is on the rise from testing with goals .
e How feasible is evolving a neural network to control an n 8 main dlrectl_ons : : ﬁ
: : : and at the starting -
X-drive robot entirely on its own? bosition

(generation 10)

An X-drive chassis:

e 4 motor groups each controlling an
omni-directional wheel angled at 45°
e Can rotate independent of movement

.....................

MEthOdS e / Paths and angles of

e Developed a robot simulator in l the top 5 performers - ~—— 1 .
Python to be used as the problem / oodinates at generation 50
space for training . t

Fitness
Function

e Used NEAT [1] to evolve
populations of robots to reach

20 20 20
10 10 10
0 0 0
~10 -10 -10
I] [] [] -20 -20 -20
a goal position and angle in - 1 - 1 —<F
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

our simulation
Motors

e Integrated the neural network I & m m
behavior into the C++ program f f f
running on a physical robot /" sensors . . .

Res u Its Paths and angles of

the top 5 performers - i T w

e Trained to drive to random points within 10 arbitrary units at generation 100

away with a desired final angle
o Fithess measured across 5 trials based on how close to

the target position it could get after 100 iterations in each : :
o Additional bonuses for getting within a range of the goal . y . i
and/or reaching the target angle 15
e Tested best models in 9 driving tasks with different target
positions and target angle of 17 radians with 500 iterations to

run for 7
0 [0 EE O E Conclusions
@\Cs ‘ é e Models were quickly able to discover solutions to the problem
° e Models were seen using combinations of previously learned
|

SEclHEn patterns to move in new directions
e Our fitness function could be rewritten to more highly consider
the speed at which a model reached the goal

e |ater generations focused more on simplifying the network
while maintaining constant performance

EEEREEEE(x)
: -’//\ | / /
N ,/ | | //
«/ T) /“/,

Population's best fithess

500 -

1.4

1i2
400 A

1.0 e
o
- @ 300 -
#0841 v |
[=) [
0.6 —
0.4 v |
100 4
0.2 |

0.0 T T 0 a
0 20 40 60 80 100 0 20 40 60 80 100

Size per Sp

200

Fit
——

g o TENNESSEE

KNOXVILLE

[1] https://github.com/CodeReclaimers/neat-python

